Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
1.
J Pharmacol Exp Ther ; 389(1): 40-50, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336380

RESUMEN

B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent type of cancer in young children and is associated with high levels of reactive oxygen species (ROS). The antioxidant N-acetylcysteine (NAC) was tested for its ability to alter disease progression in a mouse model of B-ALL. Mb1-CreΔPB mice have deletions in genes encoding PU.1 and Spi-B in B cells and develop B-ALL at 100% incidence. Treatment of Mb1-CreΔPB mice with NAC in drinking water significantly reduced the frequency of CD19+ pre-B-ALL cells infiltrating the thymus at 11 weeks of age. However, treatment with NAC did not reduce leukemia progression or increase survival by a median 16 weeks of age. NAC significantly altered gene expression in leukemias in treated mice. Mice treated with NAC had increased frequencies of activating mutations in genes encoding Janus kinases 1 and 3. In particular, frequencies of Jak3 R653H mutations were increased in mice treated with NAC compared with control drinking water. NAC opposed oxidization of PTEN protein ROS in cultured leukemia cells. These results show that NAC alters leukemia progression in this mouse model, ultimately selecting for leukemias with high Jak3 R653H mutation frequencies. SIGNIFICANCE STATEMENT: In a mouse model of precursor B-cell acute lymphoblastic leukemia associated with high levels of reactive oxygen species, treatment with N-acetylcysteine did not delay disease progression but instead selected for leukemic clones with activating R653H mutations in Janus kinase 3.


Asunto(s)
Agua Potable , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Ratones , Animales , Preescolar , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Quinasas Janus , Tasa de Mutación , Especies Reactivas de Oxígeno/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Mutación , Janus Quinasa 3/genética , Janus Quinasa 3/metabolismo , Progresión de la Enfermedad
2.
Front Immunol ; 14: 1170475, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483604

RESUMEN

During B cell development in bone marrow, large precursor B cells (large Pre-B cells) proliferate rapidly, exit the cell cycle, and differentiate into non-proliferative (quiescent) small Pre-B cells. Dysregulation of this process may result in the failure to produce functional B cells and pose a risk of leukemic transformation. Here, we report that AT rich interacting domain 5B (ARID5B), a B cell acute lymphoblastic leukemia (B-ALL) risk gene, regulates B cell development at the Pre-B stage. In both mice and humans, we observed a significant upregulation of ARID5B expression that initiates at the Pre-B stage and is maintained throughout later stages of B cell development. In mice, deletion of Arid5b in vivo and ex vivo exhibited a significant reduction in the proportion of immature B cells but an increase in large and small Pre-B cells. Arid5b inhibition ex vivo also led to an increase in proliferation of both Pre-B cell populations. Metabolic studies in mouse and human bone marrow revealed that fatty acid uptake peaked in proliferative B cells then decreased during non-proliferative stages. We showed that Arid5b ablation enhanced fatty acid uptake and oxidation in Pre-B cells. Furthermore, decreased ARID5B expression was observed in tumor cells from B-ALL patients when compared to B cells from non-leukemic individuals. In B-ALL patients, ARID5B expression below the median was associated with decreased survival particularly in subtypes originating from Pre-B cells. Collectively, our data indicated that Arid5b regulates fatty acid metabolism and proliferation of Pre-B cells in mice, and reduced expression of ARID5B in humans is a risk factor for B cell leukemia.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Factores de Transcripción , Animales , Humanos , Ratones , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Ácidos Grasos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Células Precursoras de Linfocitos B/metabolismo , Factores de Transcripción/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(26): e2306564120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339228

RESUMEN

Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from VH, D, and JH gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a JH-based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to JHs to form a DJH-RC. Igh has a provocative number and organization of CTCF-binding elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the VH and D/JH domains, over 100 CBEs across the VH domain convergent to CBE1, and 10 clustered 3'Igh-CBEs convergent to CBE2 and VH CBEs. IGCR1 CBEs segregate D/JH and VH domains by impeding loop extrusion-mediated RAG-scanning. Downregulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJH-RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3'Igh-CBEs in regulating RAG-scanning and elucidate the mechanism of the ordered transition from D-to-JH to VH-to-DJH recombination, we tested effects of inverting and/or deleting IGCR1 or 3'Igh-CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3'Igh-CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL downregulation mechanism in progenitor-B cells as opposed to a strict developmental switch.


Asunto(s)
Secuencias Reguladoras de Ácidos Nucleicos , Recombinación V(D)J , Animales , Ratones , Recombinación V(D)J/genética , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Cromatina/metabolismo
4.
J Immunol ; 211(1): 71-80, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37195219

RESUMEN

B cell development requires the ordered rearrangement of Ig genes encoding H and L chain proteins that assemble into BCRs or Abs capable of recognizing specific Ags. Igκ rearrangement is promoted by chromatin accessibility and by relative abundance of RAG1/2 proteins. Expression of the E26 transformation-specific transcription factor Spi-C is activated in response to dsDNA double-stranded breaks in small pre-B cells to negatively regulate pre-BCR signaling and Igκ rearrangement. However, it is not clear if Spi-C regulates Igκ rearrangement through transcription or by controlling RAG expression. In this study, we investigated the mechanism of Spi-C negative regulation of Igκ L chain rearrangement. Using an inducible expression system in a pre-B cell line, we found that Spi-C negatively regulated Igκ rearrangement, Igκ transcript levels, and Rag1 transcript levels. We found that Igκ and Rag1 transcript levels were increased in small pre-B cells from Spic-/- mice. In contrast, Igκ and Rag1 transcript levels were activated by PU.1 and were decreased in small pre-B cells from PU.1-deficient mice. Using chromatin immunoprecipitation analysis, we identified an interaction site for PU.1 and Spi-C located in the Rag1 promoter region. These results suggest that Spi-C and PU.1 counterregulate Igκ transcription and Rag1 transcription to effect Igκ recombination in small pre-B cells.


Asunto(s)
Cadenas kappa de Inmunoglobulina , Células Precursoras de Linfocitos B , Ratones , Animales , Células Precursoras de Linfocitos B/metabolismo , Cadenas kappa de Inmunoglobulina/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Recombinación Genética
5.
Rom J Morphol Embryol ; 64(1): 35-40, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37128789

RESUMEN

There is a lack of data in the mainstream literature regarding the interactions between gingival fibroblasts, as a component of the local niche, and tumor precursors of B-lymphocytes. Although it is known that the development of tumors and tumor precursors depends on the local environment's characteristics. In order to experimentally evaluate the apoptosis of pro-B type lymphocytes, induced as a result of the known activation of orphan nuclear receptor 4A1 (NR4A1), through Cytosporone B (Csn-B, 10 µM), in the presence or absence of exosomes derived from gingival fibroblasts, we administered as a treatment: 1 µM R-7050 [functional inhibitor of tumor necrosis factor alpha (TNFα)], 1 µM Z-IETD-FMK (functional inhibitor of caspase 8), 1 µM GSK690693 (functional inhibitor of Akt 1∕2∕3 pathways) and, last but not least, 1 µM scutellarin [functional inhibitor of receptor activator of nuclear factor-kappa B ligand (RANKL)] and therefore of the signal transducer and activator of transcription 3 (STAT3) pathway. Firstly, it is really clear that the presence of exosomes in the pro-B lymphocytes culture medium amplified the apoptotic effects of 10 µM Csn-B. The inhibition of tumoral precursors development, namely the pro-B type, might be highly dependent on the inhibition of Akt 1∕2∕3 pathways, the first and most important consequence being apoptosis induced by the activation of NR4A1 orphan nuclear receptors.


Asunto(s)
Exosomas , Neoplasias , Humanos , Apoptosis , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Exosomas/metabolismo , Fibroblastos/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
Nat Commun ; 14(1): 2316, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085514

RESUMEN

Extended loop extrusion across the immunoglobulin heavy-chain (Igh) locus facilitates VH-DJH recombination following downregulation of the cohesin-release factor Wapl by Pax5, resulting in global changes in the chromosomal architecture of pro-B cells. Here, we demonstrate that chromatin looping and VK-JK recombination at the Igk locus were insensitive to Wapl upregulation in pre-B cells. Notably, the Wapl protein was expressed at a 2.2-fold higher level in pre-B cells compared with pro-B cells, which resulted in a distinct chromosomal architecture with normal loop sizes in pre-B cells. High-resolution chromosomal contact analysis of the Igk locus identified multiple internal loops, which likely juxtapose VK and JK elements to facilitate VK-JK recombination. The higher Wapl expression in Igµ-transgenic pre-B cells prevented extended loop extrusion at the Igh locus, leading to recombination of only the 6 most 3' proximal VH genes and likely to allelic exclusion of all other VH genes in pre-B cells. These results suggest that pro-B and pre-B cells with their distinct chromosomal architectures use different chromatin folding principles for V gene recombination, thereby enabling allelic exclusion at the Igh locus, when the Igk locus is recombined.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina , Células Precursoras de Linfocitos B , Recombinación V(D)J , Cromatina/genética , Cromatina/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Recombinación Genética , Recombinación V(D)J/genética
7.
Cell Death Differ ; 30(6): 1447-1456, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36894688

RESUMEN

Many lymphoid malignancies arise from deregulated c-MYC expression in cooperation with additional genetic lesions. While many of these cooperative genetic lesions have been discovered and their functions characterised, DNA sequence data of primary patient samples suggest that many more do exist. However, the nature of their contributions to c-MYC driven lymphomagenesis have not yet been investigated. We identified TFAP4 as a potent suppressor of c-MYC driven lymphoma development in a previous genome-wide CRISPR knockout screen in primary cells in vivo [1]. CRISPR deletion of TFAP4 in Eµ-MYC transgenic haematopoietic stem and progenitor cells (HSPCs) and transplantation of these manipulated HSPCs into lethally irradiated animals significantly accelerated c-MYC-driven lymphoma development. Interestingly, TFAP4 deficient Eµ-MYC lymphomas all arose at the pre-B cell stage of B cell development. This observation prompted us to characterise the transcriptional profile of pre-B cells from pre-leukaemic mice transplanted with Eµ-MYC/Cas9 HSPCs that had been transduced with sgRNAs targeting TFAP4. This analysis revealed that TFAP4 deletion reduced expression of several master regulators of B cell differentiation, such as Spi1, SpiB and Pax5, which are direct target genes of both TFAP4 and MYC. We therefore conclude that loss of TFAP4 leads to a block in differentiation during early B cell development, thereby accelerating c-MYC-driven lymphoma development.


Asunto(s)
Linfoma , Proteínas Proto-Oncogénicas c-myc , Ratones , Animales , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Genes myc , Linfoma/patología , Células Precursoras de Linfocitos B/metabolismo , Ratones Transgénicos
8.
Immunol Res ; 71(4): 609-616, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36753036

RESUMEN

The P4-type ATPases are believed to function as flippases that contribute to the organization of the asymmetric aminophospholipid distribution on the plasma membranes of eukaryotes by their ability to internalize specific phospholipids from the outer leaflet to the inner leaflet. Despite the existence of 14 members of the P4-type ATPases in humans and 15 in mice, their roles in the immune system have not been fully understood. So far, ATP11C was shown to be important for B cells, and mice deficient for ATP11C had a developmental arrest at the pro-B to pre-B cell transition stage of B cell development. Using an ATP11C-deficient pre-B cell line generated through CRISPR/Cas9 engineering, we here tested the role of ATP11C in pre-B cells in vitro and showed that ablation of ATP11C in pre-B cells causes a defect in the flippase activity. We further demonstrated that loss of ATP11C does not impede the proliferation of pre-B cells in response to IL-7. However, pre-B cells lacking ATP11C failed to differentiate into immature B cells upon removal of IL-7. These results suggest that disruption of lipid asymmetry by loss of ATP11C in pre-B cells may control the switch from proliferation to differentiation in pre-B cells.


Asunto(s)
Interleucina-7 , Células Precursoras de Linfocitos B , Humanos , Ratones , Animales , Células Precursoras de Linfocitos B/metabolismo , Interleucina-7/metabolismo , Adenosina Trifosfatasas/metabolismo , Diferenciación Celular , Proliferación Celular , Proteínas de Transporte de Membrana/metabolismo
9.
Immunohorizons ; 7(1): 49-63, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36637517

RESUMEN

Newly generated immature B cells that bind self-antigen with high avidity arrest in differentiation and undergo central tolerance via receptor editing and clonal deletion. These autoreactive immature B cells also express low surface levels of the coreceptor CD19, a key activator of the PI3K pathway. Signals emanating from both CD19 and PI3K are known to be critical for attenuating receptor editing and selecting immature B cells into the periphery. However, the mechanisms that modulate CD19 expression at this stage of B cell development have not yet been resolved. Using in vivo and in vitro models, we demonstrate that Cd19 de novo gene transcription and translation do not significantly contribute to the differences in CD19 surface expression in mouse autoreactive and nonautoreactive immature B cells. Instead, CD19 downregulation is induced by BCR stimulation in proportion to BCR engagement, and the remaining surface IgM and CD19 molecules promote intracellular PI3K-AKT activity in proportion to their level of expression. The internalized CD19 is degraded with IgM by the lysosome, but inhibiting lysosome-mediated protein degradation only slightly improves surface CD19. In fact, CD19 is restored only upon Ag removal. Our data also reveal that the PI3K-AKT pathway positively modulates CD19 surface expression in immature B cells via a mechanism that is independent of inhibition of FOXO1 and its role on Cd19 gene transcription while is dependent on mTORC1.


Asunto(s)
Linfocitos B , Células Precursoras de Linfocitos B , Ratones , Animales , Células Precursoras de Linfocitos B/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Médula Ósea/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inmunoglobulina M
10.
Blood Adv ; 7(7): 1077-1091, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36322817

RESUMEN

Noncanonical exon usage plays many important roles in cellular phenotypes, but its contribution to human B-cell development remains sketchily understood. To fill this gap, we collected various B-cell fractions from bone marrow (BM) and tonsil donors, performed RNA sequencing, and examined transcript variants. We identified 150 genes that harbor local splicing variations in all pairwise comparisons. One of them encodes FBXW7, an E3 ubiquitin ligase implicated as a driver in several blood cancers. Surprisingly, we discovered that in normal human pro-B cells, the predominant transcript used an alternative first exon to produce the poorly characterized FBXW7ß isoform, previously thought to be restricted to neural tissues. The FBXW7ß transcript was also abundant in cell lines and primary samples of pediatric B-cell acute lymphoblastic leukemia (B-ALL), which originates in the BM. When overexpressed in a heterologous cell system, this transcript yielded the expected protein product, as judged by anti-FLAG immunoblotting and mass spectrometry. Furthermore, in REH B-ALL cells, FBXW7ß mRNA was the only FBXW7 isoform enriched in the polyribosome fraction. To shed light on possible functions of FBXW7ß, we used gain- and loss-of-function approaches and identified an FBXW7-dependent inflammatory gene signature, apparent in a subset of B-ALL with high FBXW7ß expression. This signature contained several members of the tumor necrosis factor superfamily, including those comprising the HLA Class III cluster (LTB, LST1, NCR3, LTA, and NFKBIL1). Our findings suggest that FBXW7ß expression drives proinflammatory responses, which could contribute to normal B-cell development, leukemogenesis, and responses to anticancer therapies.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Células Precursoras de Linfocitos B , Niño , Humanos , Línea Celular , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Activación Transcripcional
11.
PLoS One ; 17(8): e0273810, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040923

RESUMEN

B cells represent a critical component of the adaptive immune response whose development and differentiation are determined by antigen-dependent and antigen-independent interactions. In this study, we explored the effects of IL-4 and pattern-recognition receptor (PRR) ligands on B cell development and differentiation by investigating their capacity to drive the in vitro maturation of human transitional B cells. In the presence of IL-4, ligands for TLR7/8, TLR9, and NOD1 were effective in driving the in vitro maturation of cord blood transitional B cells into mature, naïve B cells as measured by CD23 expression, ABCB1 transporter activation and upregulation of sIgM and sIgD. In addition, several stimulation conditions, including TLR9 ligand alone, favored an expansion of CD27+ IgM memory B cells. Transitional B cells stimulated with TLR7/8 ligand + IL-4 or TLR9 ligand, with or without IL-4, induced a significant subpopulation of CD23+CD27+ B cells expressing high levels of sIgM and sIgD, a minor B cell subpopulation found in human peripheral blood. These studies illustrate the heterogeneity of the B cell populations induced by cytokine and PRR ligand stimulation. A comparison of transitional and mature, naïve B cells transcriptomes to identify novel genes involved in B cell maturation revealed that mature, naïve B cells were less transcriptionally active than transitional B cells. Nevertheless, a subset of differentially expressed genes in mature, naïve B cells was identified including genes associated with the IL-4 signaling pathway, PI3K signaling in B lymphocytes, the NF-κB signaling pathway, and the TNFR superfamily. When transitional B cells were stimulated in vitro with IL-4 and PRR ligands, gene expression was found to be dependent on the nature of the stimulants, suggesting that exposure to these stimulants may alter the developmental fate of transitional B cells. The influence of IL-4 and PRR signaling on transitional B cell maturation illustrates the potential synergy that may be achieved when certain PRR ligands are incorporated as adjuvants in vaccine formulations and presented to developing B cells in the context of an inflammatory cytokine environment. These studies demonstrate the potential of the PRR ligands to drive transitional B cell differentiation in the periphery during infection or vaccination independently of antigen mediated BCR signaling.


Asunto(s)
Células Precursoras de Linfocitos B , Receptor Toll-Like 7 , Diferenciación Celular , Citocinas/metabolismo , Humanos , Interleucina-4/farmacología , Ligandos , Activación de Linfocitos , Fosfatidilinositol 3-Quinasas , Células Precursoras de Linfocitos B/metabolismo , Receptores de Reconocimiento de Patrones , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(36): e2205629119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037365

RESUMEN

Elimination of autoreactive developing B cells is an important mechanism to prevent autoantibody production. However, how B cell receptor (BCR) signaling triggers apoptosis of immature B cells remains poorly understood. We show that BCR stimulation up-regulates the expression of the lysosomal-associated transmembrane protein 5 (LAPTM5), which in turn triggers apoptosis of immature B cells through two pathways. LAPTM5 causes BCR internalization, resulting in decreased phosphorylation of SYK and ERK. In addition, LAPTM5 targets the E3 ubiquitin ligase WWP2 for lysosomal degradation, resulting in the accumulation of its substrate PTEN. Elevated PTEN levels suppress AKT phosphorylation, leading to increased FOXO1 expression and up-regulation of the cell cycle inhibitor p27Kip1 and the proapoptotic molecule BIM. In vivo, LAPTM5 is involved in the elimination of autoreactive B cells and its deficiency exacerbates autoantibody production. Our results reveal a previously unidentified mechanism that contributes to immature B cell apoptosis and B cell tolerance.


Asunto(s)
Apoptosis , Tolerancia Inmunológica , Proteínas de la Membrana , Células Precursoras de Linfocitos B , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Forkhead Box O1/metabolismo , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Fosfohidrolasa PTEN/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
13.
Front Immunol ; 13: 880668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603175

RESUMEN

The development of B cells relies on an intricate network of transcription factors critical for developmental progression and lineage commitment. In the B cell developmental trajectory, a temporal switch from predominant Foxo3 to Foxo1 expression occurs at the CLP stage. Utilizing VAV-iCre mediated conditional deletion, we found that the loss of FOXO3 impaired B cell development from LMPP down to B cell precursors, while the loss of FOXO1 impaired B cell commitment and resulted in a complete developmental block at the CD25 negative proB cell stage. Strikingly, the combined loss of FOXO1 and FOXO3 resulted in the failure to restrict the myeloid potential of CLPs and the complete loss of the B cell lineage. This is underpinned by the failure to enforce the early B-lineage gene regulatory circuitry upon a predominantly pre-established open chromatin landscape. Altogether, this demonstrates that FOXO3 and FOXO1 cooperatively govern early lineage restriction and initiation of B-lineage commitment in CLPs.


Asunto(s)
Hematopoyesis , Células Progenitoras Linfoides , Linfocitos B/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Hematopoyesis/genética , Células Progenitoras Linfoides/metabolismo , Células Precursoras de Linfocitos B/metabolismo
14.
Cell Rep ; 39(8): 110854, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35613579

RESUMEN

Immature autoreactive B cells are present in all healthy individuals, but it is unclear which signals are required for their maturation into antibody-producing cells. Inducible depletion of γδ T cells show that direct interaction between γδ T cells and immature B cells in the spleen support an "innate" transition to mature B cells with a broad range of antigen specificities. IL-4 production of γδ T cells and cell-to-cell contact via CD30L support B cell maturation and induce genes of the unfolded protein response and mTORC1 signaling. Eight days after in vivo depletion of γδ T cells, increased numbers of B cells are already stuck in the transitional phase and express increased levels of IgD and CD21. Absence of γδ T cells leads also to reduced levels of serum anti-nuclear autoantibodies, making γδ T cells an attractive target to treat autoimmunity.


Asunto(s)
Células Precursoras de Linfocitos B , Receptores de Antígenos de Linfocitos T gamma-delta , Animales , Anticuerpos , Linfocitos B , Humanos , Ratones , Ratones Endogámicos C57BL , Células Precursoras de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T
15.
Front Immunol ; 13: 842340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371049

RESUMEN

The generation, differentiation, survival and activation of B cells are coordinated by signals emerging from the B cell antigen receptor (BCR) or its precursor, the pre-BCR. The adaptor protein SLP65 (also known as BLNK) is an important signaling factor that controls pre-B cell differentiation by down-regulation of PI3K signaling. Here, we investigated the mechanism by which SLP65 interferes with PI3K signaling. We found that SLP65 induces the activity of the small GTPase RHOA, which activates PTEN, a negative regulator of PI3K signaling, by enabling its translocation to the plasma membrane. The essential role of RHOA is confirmed by the complete block in early B cell development in conditional RhoA-deficient mice. The RhoA-deficient progenitor B cells showed defects in activation of immunoglobulin gene rearrangement and fail to survive both in vitro and in vivo. Reconstituting the RhoA-deficient cells with RhoA or Foxo1, a transcription factor repressed by PI3K signaling and activated by PTEN, completely restores the survival defect. However, the defect in differentiation can only be restored by RhoA suggesting a unique role for RHOA in B cell generation and selection. In full agreement, conditional RhoA-deficient mice develop increased amounts of autoreactive antibodies with age. RHOA function is also required at later stage, as inactivation of RhoA in peripheral B cells or in a transformed mature B cell line resulted in cell loss. Together, these data show that RHOA is the key signaling factor for B cell development and function by providing a crucial SLP65-activated link between BCR signaling and activation of PTEN. Moreover, the identified essential role of RHOA for the survival of transformed B cells offers the opportunity for targeting B cell malignancies by blocking RHOA function.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Células Precursoras de Linfocitos B , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Proteína de Unión al GTP rhoA
16.
Nat Commun ; 13(1): 659, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115489

RESUMEN

Kinase signaling fuels growth of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Yet its role in leukemia initiation is unclear and has not been shown in primary human hematopoietic cells. We previously described activating mutations in interleukin-7 receptor alpha (IL7RA) in poor-prognosis "ph-like" BCP-ALL. Here we show that expression of activated mutant IL7RA in human CD34+ hematopoietic stem and progenitor cells induces a preleukemic state in transplanted immunodeficient NOD/LtSz-scid IL2Rγnull mice, characterized by persistence of self-renewing Pro-B cells with non-productive V(D)J gene rearrangements. Preleukemic CD34+CD10highCD19+ cells evolve into BCP-ALL with spontaneously acquired Cyclin Dependent Kinase Inhibitor 2 A (CDKN2A) deletions, as commonly observed in primary human BCP-ALL. CRISPR mediated gene silencing of CDKN2A in primary human CD34+ cells transduced with activated IL7RA results in robust development of BCP-ALLs in-vivo. Thus, we demonstrate that constitutive activation of IL7RA can initiate preleukemia in primary human hematopoietic progenitors and cooperates with CDKN2A silencing in progression into BCP-ALL.


Asunto(s)
Subunidad alfa del Receptor de Interleucina-7/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Células Precursoras de Linfocitos B/inmunología , Transducción de Señal/inmunología , Animales , Antígenos CD34/genética , Antígenos CD34/inmunología , Antígenos CD34/metabolismo , Secuencia de Bases , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/inmunología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Expresión Génica/inmunología , Humanos , Subunidad alfa del Receptor de Interleucina-7/genética , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Células Precursoras de Linfocitos B/metabolismo , RNA-Seq/métodos , Receptores de Citocinas/genética , Receptores de Citocinas/inmunología , Receptores de Citocinas/metabolismo , Transducción de Señal/genética , Análisis de la Célula Individual/métodos , Trasplante Heterólogo
17.
Cell Death Dis ; 13(2): 107, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115499

RESUMEN

B cell development in bone marrow (BM) is a multi-staged process involving pro-B, pre-B, immature B, and mature B cells, among which pre-B cells undergo vigorous proliferation, differentiation, apoptosis, and gene rearrangement. While several signaling pathways participate in pre-B cell development have been clarified, detailed intrinsic mechanisms regulating pre-B cell proliferation and survival have not been fully understood. In the current study, we report that miR-582 regulates pre-B cell proliferation and survival. miR-582 is enriched in pre-B cells. Deletion of miR-582 in mice expanded the BM pre-B cell population in a cell-autonomous manner as shown by competitive BM transplantation. We show that forced miR-582 overexpression inhibited pre-B cell proliferation and survival, whereas downregulation of miR-582 by siRNA significantly promoted pre-B cell proliferation and survival in vitro. We identified that Hif1α and Rictor are authentic targets of miR-582 in pre-B cells as shown by reporter assays. Moreover, miR-582 overexpression reduced the expression of Hif1α and its downstream molecule Glut1, as well as Rictor and mTORC2 activity as shown by attenuated AKT and FoxO1 phosphorylation, while miR-582 knockdown showed opposite effects. miR-582 knockdown-induced increases in pre-B proliferation and survival was abrogated by Hif1α and Rictor inhibitors. Together, miR-582 functions as a negative regulator of pre-B cell proliferation and survival by simultaneously targeting Hif1α and mTORC2 signaling that regulates metabolism in early B cell development.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , MicroARNs , Células Precursoras de Linfocitos B , Proteína Asociada al mTOR Insensible a la Rapamicina , Animales , Proliferación Celular/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , MicroARNs/genética , Células Precursoras de Linfocitos B/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo
18.
Immunol Rev ; 307(1): 12-26, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34997597

RESUMEN

The random recombination of immunoglobulin V(D)J gene segments produces unique IgM antibodies that serve as the antigen receptor for each developing B cell. Hence, the newly formed B cell repertoire is comprised of a variety of specificities that display a range of reactivity with self-antigens. Newly generated IgM+ immature B cells that are non-autoreactive or that bind self-antigen with low avidity are licensed to leave the bone marrow with their intact antigen receptor and to travel via the blood to the peripheral lymphoid tissue for further selection and maturation. In contrast, clones with medium to high avidity for self-antigen remain within the marrow and undergo central tolerance, a process that revises their antigen receptor or eliminates the autoreactive B cell altogether. Thus, central B cell tolerance is critical for reducing the autoreactive capacity and avidity for self-antigen of our circulating B cell repertoire. Bone marrow cultures and mouse models have been instrumental for understanding the mechanisms that regulate the selection of bone marrow B cells. Here, we review recent studies that have shed new light on the contribution of the ERK, PI3K, and CXCR4 signaling pathways in the selection of mouse and human immature B cells that either bind or do not bind self-antigen.


Asunto(s)
Tolerancia Central , Receptores de Antígenos de Linfocitos B , Autoinmunidad , Linfocitos B , Células de la Médula Ósea , Humanos , Células Precursoras de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo
20.
Front Immunol ; 12: 779085, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880871

RESUMEN

Strict control of B lymphocyte development is required for the ability to mount humoral immune responses to diverse foreign antigens while remaining self-tolerant. In the bone marrow, B lineage cells transit through several developmental stages in which they assemble a functional B cell receptor in a stepwise manner. The immunoglobulin heavy chain gene is rearranged at the pro-B stage. At the large pre-B stage, cells with a functional heavy chain expand in response to signals from IL-7 and the pre-BCR. Cells then cease proliferation at the small pre-B stage and rearrange the immunoglobulin light chain gene. The fully formed BCR is subsequently expressed on the surface of immature B cells and autoreactive cells are culled by central tolerance mechanisms. Once in the periphery, transitional B cells develop into mature B cell subsets such as marginal zone and follicular B cells. These developmental processes are controlled by transcription factor networks, central to which are IRF4 and IRF8. These were thought to act redundantly during B cell development in the bone marrow, with their functions diverging in the periphery where IRF4 limits the number of marginal zone B cells and is required for germinal center responses and plasma cell differentiation. Because of IRF4's unique role in mature B cells, we hypothesized that it may also have functions earlier in B cell development that cannot be compensated for by IRF8. Indeed, we find that IRF4 has a unique role in upregulating the pre-B cell marker CD25, limiting IL-7 responsiveness, and promoting migration to CXCR4 such that IRF4-deficient mice have a partial block at the pre-B cell stage. We also find that IRF4 acts in early transitional B cells to restrict marginal zone B cell development, as deletion of IRF4 in mature B cells with CD21-cre impairs plasma cell differentiation but has no effect on marginal zone B cell numbers. These studies highlight IRF4 as the dominant IRF family member in early B lymphopoiesis.


Asunto(s)
Proliferación Celular , Factores Reguladores del Interferón/metabolismo , Linfopoyesis , Células Precursoras de Linfocitos B/metabolismo , Receptores de Complemento 3d/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CXCL12/farmacología , Quimiotaxis de Leucocito , Regulación del Desarrollo de la Expresión Génica , Factores Reguladores del Interferón/genética , Interleucina-7/farmacología , Linfopoyesis/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Células Precursoras de Linfocitos B/efectos de los fármacos , Células Precursoras de Linfocitos B/inmunología , Receptores de Complemento 3d/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...